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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease, in which the primary etiology remains

unknown. AD presents amyloid beta (Aβ) protein aggregation and neurofibrillary plaque deposits. AD

shows oxidative stress and chronic inflammation. In AD, canonical Wingless-Int (Wnt)/β-catenin path-

way is downregulated, whereas peroxisome proliferator-activated receptor γ (PPARγ) is increased.

Downregulation of Wnt/β-catenin, through activation of glycogen synthase kinase-3β (GSK-3β) by Aβ,
and inactivation of phosphatidylinositol 3-kinase/Akt signaling involve oxidative stress in AD.

Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid from Cannabis sativa plant. In PC12

cells, Aβ-induced tau protein hyperphosphorylation is inhibited by CBD. This inhibition is associated

with a downregulation of p-GSK-3β, an inhibitor of Wnt pathway. CBD may also increase Wnt/β-cate-
nin by stimulation of PPARγ, inhibition of Aβ and ubiquitination of amyloid precursor protein. CBD

attenuates oxidative stress and diminishes mitochondrial dysfunction and reactive oxygen species

generation. CBD suppresses, through activation of PPARγ, pro-inflammatory signaling and may be a

potential new candidate for AD therapy.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease (ND), in
which the primary etiology remains unknown. AD is marked by
two main postmortem pathological phenomenons: amyloid beta
(Aβ) protein aggregation forming plaque deposits and tau protein
hyperphosphorylation resulting in neurofibrillary tangles (NFTs).
Diminution of cognitive function, diminution of memory, and

other neurobehavioral manifestations are common symptoms in
AD [1]. Other behavioral and cognitive symptoms include social
withdrawal, poor facial recognition ability, increased motor agita-
tion, and likelihood of wandering [2,3]. Oxidative stress and
chronic inflammation are considered as likely underlying causes
of AD [4,5]. Increased oxidative stress may be an early indication
of AD risk [6,7].
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In AD, canonical Wingless-Int (Wnt)/β-catenin is downregulated,
whereas peroxisome proliferator-activated receptor γ (PPARγ) is
increased [8]. Conversely, other NDs, like Amyotrophic lateral scler-
osis, have canonical Wnt/β-catenin pathway upregulated, while
PPARγ is decreased [9]. Subsequently, NDs have recently been clas-
sified into these two categories, per the regulation of Wnt/β-catenin
and PPARγ [10].

In AD, Aβ protein accumulation decreases Wnt/β-catenin pathway
[11]. Downregulation of β-catenin reduces the expression of phospha-
tidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway [12,13].
Inactivation of Wnt/β-catenin/PI3K/Akt pathway involves oxidative
stress in mitochondria [14]. Thus, stimulating Wnt/β-catenin signaling
could represent an interesting therapeutic target for AD [15,16].

PPARγ is upregulated in AD due to the neuroinflammation [17].
PPARγ agonists are utilized in AD and show beneficial effects
[18,19]. The anti-inflammatory effect induced by PPARγ agonists
may explain their positive effect in AD.

Cannabinoids belong to a heterogeneous group of compounds:
endogenous, synthetic and phytocannabinoids [20,21]. Cannabidiol
(CBD) is a non-psychotomimetic phytocannabinoid from Cannabis
sativa plant. CBD can attenuate brain damage associated with neu-
rodegeneration [22].

CBD reduces activation of GSK3-β, an inhibitor of Wnt pathway
[23]. In AD PC12 cells, Aβ-induced tau protein hyperphosphorylation
is inhibited by CBD. This effect involves increasing Wnt/β-catenin
pathway and results in attenuation of oxidative stress [24,25].

Activation of PPARγ induces anti-inflammatory effects in AD [26].
CBD increases neuronal survival by reducing apoptosis and decreasing
amyloid precursor protein (APP) level through activation of PPARγ
receptors [27]. CBD can suppress pro-inflammatory pathway and neu-
roinflammation [28,29].

In this review, the links between CBD and the interplay canon-
ical Wnt/β-catenin-PPARγ in AD are discussed.

AD: Oxidative Stress and Neuroinflammation

The pathological events of AD include senile plaques, due to the
extracellular accumulation of Aβ protein [30], and NFTs, caused by
the aggregation of hyperphosphorylated tau [31].

Aβ is mediated by the sequential cleavage of the APP, mediated
by the β-secretase (BACE-1) and γ-secretase complex [32]. NFTs are
composed of the aggregated hyperphosphorylated microtubule-
associated protein (MAP) tau. Tau is a microtubule-stabilizing pro-
tein. Tau preserves neuronal cell structure and axonal transport. In
AD, tau is disproportionately phosphorylated by several kinases,
such as the glycogen synthase kinase-3β (GSK-3β), cyclin-dependent
protein kinase-5 (CDK5), calmodulin-dependent protein kinase II
(CAMKII), dual specificity tyrosine-phosphorylation-regulated kinase
1A, and mitogen-activated protein kinases (MAPKs) are the best
known [32–35].

Several pathways such as genetic factors, chronic inflammation
induced-cytokine release, oxidative stress, and neurotoxicity ele-
ments have been proposed as likely underlying causes [4,5]. Aβ and
NFTs generate chronic inflammatory response and oxidative dam-
age, which enhance the progressive neurodegeneration. Increased
oxidative stress may be an early indication of AD risk [6,7]. No
effective therapies can counteract Aβ or hyperphosphorylated-tau
formation, thus new therapeutic drugs are needed.

Mitochondrial damage in AD leads to excessive produce of
reactive oxygen species (ROS) and lowered ATP production [36,37].
Mitochondrial defects damage the cell by increasing production and

releasing ROS which cause cell damage and death by ATP depletion
through decreased oxidative phosphorylation [38]. Oxidative stress
and mitochondrial dysfunction involve dementia with cell death
[39–41].

Aβ-induced oxidative stress alters cellular signaling pathways [42].
Incubation of the Aβ peptide induces a neurotoxic effect characterized
by oxidative stress, apoptosis and damage to membrane and cytosolic
proteins, mitochondrial DNA, and lipids [43].

Cell damage and worsening of cell signaling with accumulation
of ROS in the cell can induce oxidative stress [42]. ROS provide
essential molecular services. Neutrophils generate superoxide via
NADPH oxidase, a membrane-associated enzyme, to sequester or
eliminate pathogens [44]. Superoxide forms from oxidative phos-
phorylation present mitochondrial respiratory chain, especially in
the sites of NADH dehydrogenase (complex I) [45]. Aβ causes a
deficiency of both complex I (NADH dehydrogenase) and complex
IV (cytochrome c oxidase). Complex I is one of the major ROS gen-
eration sites in mitochondria under normal physiological conditions,
and changes in complex I function could be responsible for an
increase in ROS production [46]. Mitochondrial-derived ROS and
Aβ toxicity are strongly inhibited in resistant cells relative to sensi-
tive cells. Through the repression of mitochondrial respiration,
Aβ-resistant cells produce less ROS and show higher resistance to
mitochondrial depolarization [14].

Amyloid oligomers induce lipid peroxidation and oxidative dam-
age in proteins and biomolecules [47]. Alterations in the membrane,
by Aβ accumulation, induce a massive influx of Ca2+, which alters
the homeostasis of Ca2+ causing mitochondrial dysfunction, synapse
loss, and neuronal death. Low levels of glutathione (GSH), in
response to increased Ca2+ release, result in ROS accumulation [48].
Brain’s detoxification of ROS needs GSH redox cycling [49]. ROS
activity affects DNA transcription by leading to DNA and related
protein oxidation [50,51].

Tau induces mitochondrial dysfunction, severe ATP dysfunction,
ROS and nitrogen species generation [52], which could also disturb
the integrity of biological membranes and induce synaptic failure [53].

Higher levels of ROS enhance pro-inflammatory-induced tran-
scription of genes and release cytokines, such as interleukin-1 (IL-1)
and tumor necrosis factor-alpha (TNF-α), leading to the neuroin-
flammation process [41]. Aβ-related inflammatory component of the
pathology is considered to be a major target to regulate AD [54,55].
Aβ accumulation involves a chronic inflammatory state, causing
damage and neuronal death [54,56].

Inactivation of Wnt/β-Catenin and Activation

of PPARγ in AD

Canonical Wnt/β-catenin pathway

The Wnt pathway activity is observed in neural development for
embryogenesis and in the mediation of neuronal homeostasis in
adulthood [57–59]. The Wnt pathway is composed by a family of
secreted lipid-modified glycoproteins, being strongly conserved
across different species [60]. The canonical Wnt/β-catenin pathway
plays a major role in metabolism, embryonic development, cell fate,
and epithelial-mesenchymal transition. The canonical Wnt activity
shows high level of β-catenin in the nucleus and/or cytosol, which
can be observed by immunohistochemically staining and western
blot analysis. Its dysregulation is implicated in several diseases, par-
ticularly in NDs [10]. Wnt family genes comprises 19 ligands which
are departed in canonical Wnts and non-canonical Wnts. Canonical
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Wnt ligands (Wnt1, Wnt2, Wnt3, Wnt8a, Wnt8b, Wnt10a, and
Wnt10b) are activators of the Wnt signaling. Wnt signaling activates
the intracellular Wnt signaling (such as the β-catenin nuclear trans-
location), and secreted by neurons and immune cells in the central
nervous system (CNS) [61]. Wnt ligands are composed by ~350–400
amino acids that contain an N-terminal signal peptide for secretion
since they are lipid-modified secreted proteins [62].

β-Catenin/T-cell/lymphoid enhancer (TCF/LEF) transcription is
the main effector of the canonical Wnt pathway. The destruction
complex is composed by Axin, tumor suppressor adenomatous
polyposis coli (APC), and GSK-3β. It applies a strong control on the
β-catenin pathway. In the absence of Wnt ligands (‘off state’), the
destruction complex phosphorylates β-catenin for it degradation in
the proteasome. In the presence of Wnt ligands (‘on state’), the Wnt
receptor dimerizes with Frizzled (Fzl) and LDL receptor-related pro-
tein 5/6 (LRP5/6). Wnt receptor is associated with Dishevelled
(Dsh). This triggers the dysregulation of the destruction complex
and hampers the degradation of β-catenin in the proteasome. Then,
β-Catenin translocates to the nucleus and dimerizes with TCF/LEF
leading to the activation of β-catenin target genes such as PDK1,
MCT-1, c-Myc, cyclin D1, Cox-2, and Axin2 [63–67].

Neuroinflammation is a process age-related and associated with
augmentation of GSK-3β activity and decreased Akt and Wnt/β-cate-
nin pathways in the hippocampus of older rats [68]. GSK-3β and
Dikkopf-1 (DKK1) are two inhibitors of the Wnt signaling [69–72].
DKK1 binds to LRP5/6 co-receptors for inhibition of Wnt signaling
[73]. The β-catenin/TCF complex can regulate DKK1 transcription
by a negative feedback loop [74]. GSK-3β is a neuron-specific intra-
cellular serine-threonine kinase implicated in the control of many
patho-physiological signalings (cell membrane signaling, neuronal
polarity, and inflammation) [74–76]. GSK-3β inhibits β-catenin cyto-
solic stabilization and its translocation in the nucleus [77].

Inactivation of Wnt pathway in AD

Many studies show a downregulation of the Wnt/β-catenin signaling
in the development of AD [8,67,77–80]. There is a decreased level
of β-catenin and an increased activity of both GSK-3β and DKK1.
Aβ induces dysfunction of Wnt pathway in AD [11,81,82]. Aβ
favors DKK1, a secreted glycoprotein. In AD, DKK1 binds to LRP5/
6, blocks the interaction of Wnt/Fzd and inhibits the interaction
with Wnt ligands [83]. Increased DKK1 is observed in Alzheimer’s
brain of humans and transgenic mice [8,24,84]. GSK-3β expression
and activity are augmented in the hippocampus of AD patients
[59,85]. In AD, GSK-3β phosphorylates MAP tau leading to NFTs
[86–88]. In AD, increased GSK-3β decreases β-catenin level and
increases tau phosphorylation and NFT formation [89]. Activation
of GSK-3β favors the APP cleavage [90]. Cellular damages induced
by Aβ are reversed by inhibition of GSK-3β [91]. GSK-3β has a crit-
ical role in AD, through the phosphorylation of tau and the promo-
tion of Aβ production.

Inactivated Wnt/β-catenin pathway leads to oxidative

stress in AD

Figure 1 summarizes the role of Wnt/β-catenin pathway in oxidative
stress in AD. Oxidative damage and mitochondrial stress are
important pathological events in the appearance of early AD [92].
In affected neurons, Aβ peptide accumulation promotes mitochon-
drial dysfunction, oxidative stress, and synaptic deteriorations [93].

Lowered ATP production by inactivation of Wnt pathway
Cerebral hypometabolism is correlated temporally with severity and
has strong predictive interest for onset of dementia [94]. Decreases
in transport of glucose and enzyme phosphorylation rate in AD
brain could be due to a decreased ATP demand caused by synaptic
dysfunction [14].

Glut-1 and Glut-3 play a major role in the insulin-sensitive
homeostasis of glucose transport in the human brain [95]. Glut-3 is
the main neuronal transporter of glucose [96]. Glut-1 and Glut-3
expressions are diminished in AD brain and are correlated with cere-
bral hypometabolism [97]. After entry into the cell, glucose is phos-
phorylated to glucose-6-phosphate by the enzyme hexokinase (HK).
Amyloidogenic AD transgenic mouse models and postmortem
human AD brain tissues show decreased levels of HK [98].

The final stage in glycolysis is the transformation of phosphoenol-
pyruvate (PEP) and ADP into pyruvate by the enzyme pyruvate
kinase (PK). PK has four isoforms: PKM1, PKM2, PKL, and PKR.
PKM2 shows low affinity with PEP [99]. Under high glucose concen-
tration, PKM2 is acetylated, which diminishes its activity and targets
it toward lysosome-dependent degradation [100]. Under high glucose
concentration, peptidyl-prolyl isomerase (Pin1) action stimulates
PKM2 translocation to the nucleus [14]. Nuclear PKM2 binds β-cate-
nin and then activates c-Myc-mediated expression of glycolytic
enzymes such as Glut, lactate dehydrogenase A (LDH-A), pyruvate
dehydrogenase kinase 1 (PDK1), and PKM2 [101]. PDK1 phosphor-
ylates the pyruvate dehydrogenase complex (PDH), which is
decreased and stops in the mitochondria the conversion of pyruvate
into acetyl-CoA [102]. Activation of PI3K/Akt pathway is correlated
with increasing rate of glucose metabolism [103]. Activation of PI3K/
Akt pathway stimulates hypoxia-inducible factor 1-alpha (HIF-1α)
activity [104]. HIF-1α activation induces expression of Glut, LDH-A,
PDK1, and PKM2 [103,105].

Accumulation of Aβ protein in the AD brain decreases levels of
PI3K and Akt activity [106]. Aβ protein accumulation decreases
Wnt and results in degradation of β-catenin [8,11]. Downregulation
of β-catenin reduces the expression of PI3K/Akt signaling [12,13].
Aβ protein accumulation decreases the level of PI3K/Akt pathway
signaling and results in inactivation of HIF-1α. Inactivation of HIF-
1α involves PKM2 non-translocation to the nucleus. PKM2 inhibits
PEP cascade and the formation of pyruvate. PKM2 does not bind
with β-catenin and does not induce c-Myc-mediated expression of
glycolytic enzymes (Glut, LDH-A, and PDK1). Hypometabolism of
glucose and deficits in energy are observed in AD [107].

ROS accumulation and Wnt pathway
Pin1 dysregulation is observed in AD [108]. PKM2 is decreased by
acute increases in intracellular concentrations of ROS by C358 oxi-
dation, which enhances glucose flux and facilitates the production of
the reducing molecule NADPH [105].

Upregulation of LDH-A leads to pyruvate being diverted
towards the formation of lactate [109]. LDH-A activation produces
NAD+ which sustains the NADH/NAD+ redox balance and allows
continued glycolysis and biosynthetic reactions [110]. Production of
ROS and oxidative stress resulting from apoptotic signaling is
reduced by the transition from mitochondrial respiration to lactate
production [111]. Recent studies have shown that nerve cells resist-
ant to Aβ toxicity show a metabolic reprogramming and an activa-
tion of aerobic glycolysis through the stabilization of HIF-1α and
upregulation of PDK1 and LDH-A [112,113]. Overexpression of
PDK1 and LDH-A represses oxidative stress and confers resistance
to Aβ toxicity [113,114].
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Aβ toxicity, through inactivation of Wnt/β-catenin pathway, is
associated with mitochondrial-derived ROS [14]. Forkhead box
class O (FoxO) transcription factors are major intracellular regula-
tors of several metabolic pathways including production of glucose
and the oxidative stress cellular response [115]. ROS inhibit Wnt/β-
catenin pathway by hijacking β-catenin from TCF/LEF to FoxO
[116]. This involves accumulation and binding of β-catenin to FoxO
as a cofactor, and the activation of nuclear FoxO transcriptional
activity [117,118]. FoxO activates the expression of apoptotic genes
[119–121]. FoxO3a arrests cell cycle through the activation of the
CDK inhibitor p27kip1 production and the repression of cyclin D1
expression [122,123]. FoxO activation results in induction of apop-
tosis [124]. Inhibition of FoxO protects against Aβ exposure [125].

Activation of the Wnt signaling can counter apoptosis through post-
translational phosphorylation and sequestration of FoxO3a in the
cytosol to inhibit the loss of mitochondrial membrane permeability,
cytochrome c release, Bad phosphorylation, and activation of cas-
pases [126].

Inactivated Wnt/β-catenin pathway leads

to neuroinflammation in AD

Neuroinflammation is characterized by release of pro-inflammatory
cytokines, blood–brain barrier breakdown and leukocyte infiltration
in the brain [127]. Neuroinflammation contributes to neuronal degen-
eration [128]. Nuclear factor-kappa B (NF-κB) and pro-inflammatory
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mediators including cytokines, and prostaglandins lead to chronic
inflammation in the CNS [129–132]. In normal condition, Wnt path-
way plays a role in inflammation-induced immune response [133]. A
crosstalk exists between Wnt and NF-κB [134–139]. Wnt co-receptor
LRP5 contains an anti-inflammatory macrophage phenotype and can
decrease monocyte differentiation into macrophage [140]. β-Catenin
diminishes transcription of pro-inflammatory genes by inhibition of
NF-κB. This action is regulated by GSK-3β. GSK-3β is a negative
regulator of the β-catenin level and a positive regulator of the NF-κB
signaling [141,142].

β-Catenin acts as a transcriptional activator by controlling the
expression of anti-inflammatory genes. β-Catenin is considered as a
target gene of PPARγ [135,143]. PPARγ agonists may exert an anti-
inflammatory action by inhibiting the NF-κB-mediating transcription
of downstream genes [144]. PPARγ stimulation decreases GSK-3β
activity [145]. Many studies have suggested a crosstalk between
PPARγ and GSK-3β [135,146–149]. In AD, diminution of β-catenin
is correlated with the augmentation of NF-κB activity and neuroin-
flammation [150].

Peroxisome proliferator-activated receptor γ
PPARγ is a ligand-activated transcriptional factor from to the nuclear
hormone receptor super family. PPARγ has been shown in several cell
types, including adipose tissues, muscles, brain, and immune cells. A
few endogenous ligands of PPARγ are identified, and these include
fatty acids, phytanic acid, oxidized metabolites of linoleic acid, such
as 9-hydroxy and 13-hydroxy octadecadienoic acids (9-HODE and
13-HODE), polyunsaturated fatty acids (e.g. arachidonic acid), and
eicosanoids [151–155]. Anandamide, an endogenous cannabinoid
receptor ligand, interacts with PPARγ for differentiation of mouse
3T3-L1 fibroblasts into adipocytes [156]. The major endogenous lig-
and of PPARγ is 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2)
[151]. PPARγ ligands induce PPARγ heterodimer with retinoid X
receptor (RXR), a nuclear receptor. The PPARγ–RXR complex
changes PPARγ receptors, followed by its dissociation from corepres-
sor molecules. The complex then binds with many coactivators or
response elements, as PPAR response elements (PPREs). Therefore,
PPARγ stimulates the expression of many genes and mediates glucose
homeostasis, insulin sensitivity, lipid metabolism, immune responses,
cell fate, and inflammation [149,150]. PPARγ is strongly expressed in
adipose tissue but scarcely expressed in heart, skeletal muscle, and
liver [157–159]. PPARγ is lowly expressed in CNS and presents in
many cell types such as neurons, astrocytes, oligodendrocytes, and
microglia [160–162]. In neurons, PPARγ immunoreactivity appears
mainly as a nuclear labeling although sometimes cytosolic staining is
observed in some cortical neurons [163]. PPARγ agonist thiazolidine-
dione (TZD) ameliorates insulin sensitivity in peripheral tissues [164]
and ameliorates glucose tolerance and insulin sensitivity in Type 2
diabetic patients [165]. TZDs interact with the promoters of glucose
transporter (Glut2) and glucokinase (GK) in pancreatic β-cells and
liver. Abnormalities of PPARγ have been shown in many pathological
states like cancers, diabetes, obesity, and atherosclerosis. Some TZDs
have served for Type 2 diabetes treatment. PPARγ also plays a major
role in the regulation of cardiovascular rhythms through the control
of blood pressure circadian variations and heart rate through Bmal1
[166,167].

PPARγ and neuroinflammation in AD

PPARγ levels are elevated in AD and play a role in the modulation
of neuroinflammation [17]. PPARγ plays a role in regulating

induced inflammatory responses, by inhibiting inflammatory cyto-
kine production such as TNF, interleukin-1β (IL-1β), and IL-6, the
production of nitric oxide and the expression of matrix metallopro-
teinase 9 and macrophage scavenger receptor 1 in many cell types,
such as monocytes, macrophages, and epithelial cells [168,169].

Moreover, decreased level of Wnt signaling by GSK-3β activates
NF-κB signaling and neuroinflammation [141,142]. Inhibition of
Wnt/β-catenin pathway involves upregulation of PPARγ in many dis-
eases such as AD or arrhythmogenic right ventricular cardiomyopathy
(ARVC) [8,170,171]. γ-Catenin shares structural similarities with
β-catenin [172], and it translocates to the nucleus, and competes with
and inhibits β-catenin [173]. This phenomenon enhances adipogenesis
and summarizes the phenotype of human ARVC [170,171].

PPARγ can induce anti-inflammatory effect and this leads to the
hypothesis that PPARγ might be beneficial in CNS diseases presenting
inflammatory processes, especially in AD [8]. Anti-inflammatory effects
of PPARγ may be explained by the fact that PPARγ can inhibit several
pathways by interacting directly with NF-κB, AP-1, STAT1, and NFAT
[26,174]. PPARγ agonists diminish microglia Aβ activation and prevent
hippocampal and cortical neurons from death [175–177]. PPARγ regu-
lates inflammation of microglia due to Aβ [161]. High doses of PPARγ
agonists diminish Aβ plaques [178]. Rosiglitazone, a PPARγ agonist,
decreases Aβ-42 in ADS transgenic mice brain [19]. PPARγ activation
increases APP ubiquitination and diminishes Aβ production [179].
Troglitazone, a PPARγ agonist, has an anti-inflammatory effect on neu-
rons independently of its PPARγ activity [180].

Nonsteroidal anti-inflammatory drugs (NSAIDs) act directly on the
generation of Aβ [181]. Ibuprofen inhibits GSK-3β, reverses the decrease
in Wnt signaling due to Aβ and stabilizes β-catenin [182]. NSAIDs acti-
vate PPARγ and inhibit inflammatory processes in AD [183].

CBD and AD

Cannabidiol

Cannabinoids are a heterogeneous group of compounds classified into
three main groups: endogenous, synthetic, and phytocannabinoids
[20,21]. CBD is a non-psychotomimetic phytocannabinoid from
Cannabis sativa plant. The Cannabis sativa plant produces more than
66 compounds, including especially delta9-tetrahydrocannabinol
(THC), responsible for psychological effects, and CBD, the main non-
psychotomimetic component in this plant [184]. CBD does not change
blood pressure or temperature of body and does not induce psycho-
motor psychological function like THC [22]. CBD can attenuate brain
damage associated with neurodegeneration. Animals and humans can
tolerate high dose of CBD [22]. Moreover, CBD alters synaptic plasti-
city and stimulates neurogenesis. CBD effects are still not clear but
seem involving several pharmacological targets. CBD shows a large
spectrum of potential therapeutics properties such as anxiolytic, anti-
depressant, neuroprotective, anti-inflammatory, and immunomodula-
tory effects [185]. Cannabinoids may be considered as a new class of
drugs because of their potential effects on neurodegenerative and
neuropsychiatric disorders [20,186]. CBD has an interesting thera-
peutic action in neuropsychiatric disorders such as schizophrenia, epi-
lepsy, addiction, and neonatal hypoxic-ischemic encephalopathy
[187]. CBD can activate Wnt/β-catenin and PI3K/Akt pathways and
produce therapeutic effects in schizophrenia [188–190].

CBD’s effects in AD models

CBD may be a potential promising candidate for AD therapy [191].
CBD promises potential for the multimodal treatment of AD
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through its neuroprotective, anti-inflammatory, and antioxidant
properties [192–196]. CBD may counter many pathological AD
symptoms. Indeed, many in vitro studies have shown that CBD
treatment attenuates Aβ-induced neurotoxicity [24], tau protein-
induced hyperphosphorylation [23], cell death and promotes hippo-
campal and adult neurogenesis [29,197]. CBD administration may
reverse Aβ-induced memory impairments in rodents [198] and may
reduce Aβ formation [27].

In neuroblastoma cells overexpressing APP (SHSY5YAPP+),
CBD administration also reduces Aβ production by the promotion of
its ubiquitination [27]. In vivo CBD treatment can reverse the cogni-
tive deficits in a double transgenic AD mouse model (APP/PS1) [199].
CBD treatment during long-term can prevent the initiation of social
recognition deficit in APP × PS1 mice [200]. CBD can be used as a
long-term preventative AD treatment option and may be especially
relevant for social withdrawal and facial recognition [200]. CBD
reduces p38 MAPK phosphorylation and prevents nuclear NF-κB
translocation and the transcription of pro-inflammatory genes [23].

Mesenchymal stem cells derived from gingival (GMSCs) have a
high ability to differentiate into neural cells through their neural
crest embryonal origin [201,202]. GMSCs are an attractive perspec-
tive for the treatment of AD [203]. CBD can generate the GMSC
transcriptional profile of the genes correlated with AD. CBD treat-
ment downregulates the expression of genes which encode kinases
(GSK-3β, CMK, and MAPK) responsible for aberrant tau phosphor-
ylation. CBD prevents tau hyperphosphorylation and subsequent
NFT formation, by the reduction of the transcription level of these
kinases. β-Secretase (BACE1) and γ-secretase, the genes coding for
Aβ production, are also downregulated under CBD treatment [203].
Vanilloid receptor 1 (TRPV1) stimulation by CBD in GMSCs can
activate PI3K/Akt signaling, which in turn inhibits GSK-3β by phos-
phorylating Ser9, thereby decreasing tau phosphorylation and Aβ
production [203].

CBD: an anti-oxidative role via stimulation of Wnt

pathway in AD

Aβ toxicity decreases PI3K/Akt pathway [14]. PI3K/Akt signaling is
involved in GSK-3β activity regulation [204]. Cannabinoids can
modulate the PI3K/Akt/GSK-3β axis [205,206]. Genes coding for
the PI3K/Akt signaling are upregulated in GMSCs treated with CBD
[203]. CBD inhibits the expression of GSK-3β by promoting PI3K/
Akt signaling [203,207].

Cannabinoids exert anti-inflammatory function through
endogenous receptors, such as cannabinoid receptor 1 (CB1) and
CB2 [208]. Cannabinoids activate the PI3K/Akt pathway by binding
with CB1 receptor on neurons and glial cells, and in a less manner
with CB2 receptor in the body’s immune system [209,210]. THC is
blocked by administration of rimonabant [211]. THC is a one-sided
agonist of the CB1 receptor [212], while rimonabant is considered
as an inverse agonist of CB1 receptor [213]. N-Oleoyl glycine
(OLGly), a lipoamino acid, increases adipogenic genes such as
PPARγ, and CB1 receptor mRNA expression. The decrease of CB1
receptor by SR141716 inhibits the actions of OLGly on PPARγ
expression. OLGly increases Akt signaling pathway and decreases
FoxO activity [214].

Nevertheless, several studies have demonstrated that CBD can
prevent the negative actions of THC [215]. CBD also appears not to
be rimonabant-like in its action [216]. The effects of CBD can be
inversed by CB1 receptor inverse agonists and CBD may exert
‘indirect agonism’ at CB1 receptor [216]. However, several studies

have demonstrated that CBD shows small binding affinity with the
CB1 receptor [212,217]. CBD could not proceed by the CB1 recep-
tor but possesses several other targets that can play a role in NDs or
psychiatric disorders [218].

In AD, PI3K/Akt is downregulated via the inactivated Wnt/β-cate-
nin pathway [106]. In PC12 cells, CBD induces neuroprotective
effects on Aβ-induced toxicity [24]. CBD inhibits Aβ-induced tau pro-
tein hyperphosphorylation in PC12 cells. This action is correlated
with the activity reduction of p-GSK-3β, the phosphorylated active
form of GSK3-β, and results in increasing Wnt/β-catenin pathway [23].
Activation of this pathway can protect against Aβ neurotoxicity in
AD [8,67,84,219–222].

CBD attenuates oxidative and nitrative stress, improves mito-
chondrial function and enhances mitochondrial biogenesis [223].
CBD attenuates oxidative stress through the attenuation of mito-
chondrial dysregulation and ROS generation or by the decrease of
the expression of several ROS generating NADPH oxidase isoforms
[25,224,225]. In a concentration-dependent manner, CBD stimu-
lates cell survival, whereas diminishes ROS, nitrite production, lipid
peroxidation, and inducible nitric oxide synthase (iNOS) protein
expression [192].

However, inhibition of p-GSK-3β by CBD may be due to the
antioxidant effects of CBD [24]. However, other antioxidants like
vitamin C failed to relieve Wnt pathway in Aβ-stimulated PC12 cells
[23,226]. Nevertheless, other antioxidants, which have a phenolic
ring structure, such as vitamin E, can target the Wnt pathway [227].
It has been shown that CBD, which has a similar chemical structure
as vitamin E, can decrease tau hyperphosphorylation not only with
its antioxidant action but also through Wnt pathway increase [23].
However, DKK1 negatively modulates the canonical Wnt pathway.
But, no data have been shown about the relationship between anti-
oxidants and DKK1 [23].

CBD: an anti-inflammatory role via stimulation

of PPARγ in AD

In vivo studies reported that CBD reduces Aβ-induced neuroinflam-
mation in rats and mice [29,228]. Inflammation driven by the cyto-
kines (TNF-α and IL-1β) is attenuated by CBD [198,228]. CBD
modulates in vitro function of microglial cells and elicits benefic effects
in mice [229]. CBD can diminish lipopolysaccharide (LPS)-induced
pro-inflammatory signaling in cultured microglial cells, such as NF-κB
and STAT1 activation, while enhancing STAT3-related anti-inflam-
matory signaling [28]. Microglial cultures stimulated with the bacter-
ial endotoxin LPS and treated with CBD show lower levels of
cytokines like TNF-α, IL-1β, and IL-6 [28]. PPARγ modulates the
expression of pro-inflammatory mediators such as NO, TNF-α, IL-1β,
IL-6, iNOS, and COX-2 [230,231]. PPARγ activation represses NF-
κB-mediated inflammatory signaling [232]. PPARγ is a molecular tar-
get for CBD and can be generated in mediating transcriptional effects
in BV-2 microglial cells [233]. CBD also blocks reactive gliosis by
reducing glial stimulation and production of pro-inflammatory media-
tors [228]. This effect is linked to its possible action as a potent inhibi-
tor of NF-κB stimulation induced by Aβ challenge [23].

CBD has antioxidant properties and neuroprotective effects by
increasing cell viability and decreasing oxidative parameters. In
PC12 cells stimulated by Aβ, pretreatment of CBD reduces ROS
accumulation, lipid peroxidation, caspase-3 level, and DNA frag-
mentation [24].

CBD acts like a PPARγ agonist through receptor-dependent
mechanisms [23,234,235]. PPARγ receptors are attractive drug
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targets for inflammatory-associated neuropsychiatric disorders such
as AD [235–237]. PPARγ receptors are involved in cellular prolifer-
ation, in apoptosis and in reduction of damage induced by ROS.
Activation of PPARγ receptors inhibits transcription of pro-
inflammatory genes and prevents the NF-κB pathway [235,236].

CBD prevents Aβ-induced neuronal death by reducing oxidative
stress and ROS accumulation. PPARγ seems to induce the same
effects as nuclear-erythroid-2-related factor 2 (Nrf-2) [187]. Nrf-2
and PPARγ regulate each other [186]. There are binding sites for
Nrf-2 (antioxidant response elements) in the PPARγ promoter and

PPREs in the Nrf-2 promoter [237]. Genes associated with oxidative
stress are controlled by Nrf-2 [233]. CBD activates PPARγ and this
effect is associated with impairment of the NF-κB pathway [238].
CBD also upregulates genes encoding negative regulators of NF-κB
transcriptional activity through Nerf2 activation [233]. CBD,
through activation of PPARγ, also decreases cell and neuronal death
and promotes hippocampal neurogenesis in murine genetic model of
AD [236]. Likewise, CBD increases neuronal survival by reducing
apoptosis and decreasing APP level through activation of PPARγ
receptors [27]. Traditional PPARγ agonists, such as TZD, diminish

Decreased
GSK-3β

Cannabidiol
Activation

PPARγ

Inhibition
Aβ

Ubiquitination
APP

Increased
PI3K/Akt

Increased
Wnt/β-catenin 

Inhibition
Tau

Inhibition
NFTs

Diminution
Oxidative stress

Diminution
inflammation

Figure 2. Interactions between CBD and the interplay canonical Wnt/β-catenin and PPARγ in AD CBD inhibits Aβ, thus Aβ does not activate GSK-3β. CBD
decreases GSK-3β activity, which leads to the increase of Wnt/β-catenin pathway and PI3K/Akt pathway and in diminution of oxidative stress in AD. CBD acts

through PPAR gamma activation. CBD stimulates ubiquitination of APP and inhibition of Aβ. Inhibition of Aβ and GSK-3β inhibits tau protein and NFTs, which leads

to the diminution of neuroinflammation in AD. AD, Alzheimer’s disease; APP, amyloid precursor protein; CBD, Cannabidiol; GSK-3β, glycogen synthase kinase-

3beta; PPARγ, peroxisome proliferator-activated receptor gamma; PI3K-Akt, phosphatidylinositol 3-kinase-protein kinase B; NFTs, neurofibrillary tangles.

Table 1. Interactions of CBD with Wnt/β-catenin pathway and PPARγ in AD

CBD effects in AD References

CBD attenuates Aβ-induced neurotoxicity [24,203]
CBD reduces Aβ formation and production [27,198]
CBD attenuates tau protein-induced phosphorylation [23,203]
CBD induces ubiquitination of APP protein [27,201]
CBD attenuates neuroinflammation [23,28,29,228,233–236,240]
CBD upregulates PPARγ activity [23,29,228,234,244]
CBD increases survival and reduces apoptosis through PPARγ activation [27]
Upregulation of PPARγ attenuates neuroinflammation [8,26,161,174,180,183]
Upregulation of PPARγ decreases Aβ formation [8,19,175–179]
CBD increases cell survival, decreases ROS, nitrite production, lipid peroxidation, and iNOS protein expression [192]
CBD attenuates oxidative stress [25,224,225,244]
CBD attenuates cytokines activity (TNFα, IL-1β) [198,228,241–243]
CBD attenuates NF-κB transcriptional activity [23,28,233,237]
CBD inhibits expression of GSK-3β by promoting PI3K/Akt signaling [23,24,203–207]
CBD increases Wnt/β-catenin pathway [23,24,227]
Activation of Wnt/β-catenin pathway protects against Aβ neurotoxicity and oxidative stress [8,67,84,126,219–222]
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the overproduction of NO, IL-6, and TNF-α as well as the augmented
expression of the inducible enzymes iNOS and COX-2 induced in
LPS-stimulated astrocytic and microglial cultures [238–240]. Through
activation of PPARγ, CBD provokes a diminution of NO, TNF-α and
IL-1β release with a diminution of glial fibrillary acidic protein, S100
calcium-binding protein B (S100B) and iNOS expression. The dimin-
ution of S100B induced by CBD and mediated by PPARγ is a major
stage in the interruption of self-perpetuation of the reactive gliosis
cycle in stopping self-perpetuation of the reactive gliosis cycle. The
over-release of this astroglial-derived neurotrophin actively stimulates
the pro-inflammatory cytokine loop generated by Aβ activation. This
abundantly stimulates amyloidogenicity through the promotion of the
cleavage of APP to Aβ, and generates tau hyperphosphorylation by
dysregulation the Wnt pathway [241–243]. PPARγ activation results
in an inhibition of APP expression [175]. PPARγ upregulation pro-
motes APP ubiquitination. CBD ubiquitination activity is controlled
by PPARγ [27]. CBD induces the ubiquitination of APP protein, and
this effect generates a diminution of APP full length protein level in
SHSY5YAPP+ cells [27]. Figure 2 illustrates the anti-oxidative and
anti-inflammatory roles of CBD in AD.

Conclusion and Perspectives

Table 1 summarizes the interactions of CBD with Wnt/β-catenin
pathway and PPARγ in AD. The primary etiology of AD remains
unknown; however, oxidative stress and chronic inflammation have
been suggested as possible underlying causes of AD. AD is an ND in
which canonical Wnt/β-catenin is downregulated while PPARγ is
upregulated. Aβ protein accumulation decreases Wnt/β-catenin, while
PPARγ is upregulated due to the neuroinflammation. Downregulation
of Wnt/β-catenin pathway decreases PI3K/Akt pathway and glucose
metabolism. This effect exacerbates oxidative stress in mitochondria
and generates cell death. CBD inhibits GSK-3β and DKK1, two inhi-
bitors of Wnt pathway. CBD administration increases Wnt/β-catenin
pathway and diminishes oxidative stress in mitochondria. CBD
induces the ubiquitination of APP protein through activation of
PPARγ, decreases cell death and promotes hippocampal neurogenesis.
PPARγ activation by CBD decreases neuroinflammation in AD. CBD
may be a promising candidate for AD therapy by inhibiting oxidative
stress and neuroinflammation through the interaction with Wnt/
β-catenin and PPARγ.
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